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Abstract—Various combinatorial optimization problems like Traveling Salesman 
Problem are solved using numerous nature inspired optimization techniques. 
In this paper, Magnetic Opti- mization Algorithm and Ant Colony Optimization 
techniques are described for solving Traveling Salesman Problem. In magnetic 
optimization algorithm, each magnetic agent or particle in MOA is represented 
by a candidate solution of Traveling Salesman Problem. The magnetic force 
between the particles strength is inversely proportion to distance calculated by 
TSP. Particles with higher magnetic force, attract relatively lower magnetic 
force particles. The process is repeated until a stopping condition is satisfied, 
and the best found solution will be considered the solution with lowest 
distance. The Ant Colony Optimization (ACO) is an evolutionary techniques to 
solve TSP. The quality of the solution is further compared with the optimal 
solution and computation time.  
 
Index Terms— Traveling Salesman Problem(TSP), Magnetic Optimization 
Algorithm(MOA), Ant Colony Optimization(ACO), combinatorial  optimization. 

I. INTRODUCTION 

Traveling Salesman Problem, a well-known problem which includes the study of finding the shortest probable 
distance that a salesman has to travel by visiting all the cities only once and return back to the starting city. 
Application of TSP is found in many areas such as in very large scale integrated circuit (VLSI) for wires 
routing and routing for automated holes drilling process. Additional distance covered involve additional 
costs in term of cost or time. This is a great motivation to propose new techniques in solving TSP 
effectively. 
Magnetic Optimization Algorithm (MOA) is a novel heuris- tic optimization algorithm were the inspiration 
is from the principles of magnetic field theory. This algorithm has a good performance for solving 
optimization problems as in [6]. The search is carried out as search agents by using magnetic particles 
whereas interaction between particles with each other is based on law of electromagnetic force, in this 
algorithm. MOA has designed to solve problems in continuous real search spaces (domains). Here TSP is 
solved using MOA. 
Ant algorithms, which is a population-based approach, is applied to several NP-hard 
combinatorial optimization prob- lems. Ant algorithms, inspired from the behavior of real ant 
colonies  [8],  by  their  foraging behavior. Indirect communi- cation is one of the ideas of ant 
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algorithms and colony of agents are called artificial ants, based on pheromone trails. The 
pheromones are also used for communication by real ants. The pheromone trails are used to reflect 
their experience of distributed numeric information, modified by the ants while solving a 
particular problem. Ant Colony Optimization (ACO) meta-heuristic provides for most applications 
a framework to combinatorial optimization problems. The ant algorithms ap- plied to the TSP 
perfectly fit into the ACO meta-heuristic and, therefore, these algorithms also called as ACO 
algorithms [2]. In this paper, comparison between magnetic optimization algorithm and ant colony 
optimization is done for solving TSP. Here the comparison is based on the computation time for 
solving TSP rather than the optimal solution obtained using certain algorithm. 

II. PROBLEM DEFINITION 

Traveling Salesman Problem is solved using two approaches: Magnetic Optimization Algorithm 
and Ant Colony Optimization Algorithm. Magnetic Optimization Algorithm, a novel heuristic 
optimization algorithm that has an inspiration of the principles of magnetic field theory. Ant 
algorithms have an inspiration of the behavior of real ants, by their foraging behavior. Based on 
pheromone  trails, an indirect communication between colony of agents, called ants is the idea of 
ant algorithms. 

A. Traveling Salesman Problem 
TSP is a problem of salesman and it is difficult to solve, but easy to describe. In graph theory, the problem is 
defined as for a given complete weighted graph, find the Hamiltonian cycle with the least cost. It is widely 
used in engineering applications where some industrial problems such as frequency assignment 
problems and machine scheduling can be formulated as a TSP. In [1] author proposed TSP as follows. TSP can 
be defined on a symmetric graph (or complete undirected graph), G = (V, E) or asymmetric on G=(V,A). 
The vertex set is V = {1, .., n}, an edge set is E = {(i, j) : i, j∈V, i < j and an arc set is A = {(i, j) : i, 
j∈V,푖 ≠ 푗}. A cost matrix C = (cij ) is defined on E or on A. The cost matrix satisfies the triangular 
inequality that is cij ≤ cik + ckj for all i, j, k. In particular, in the planar region for which the vertices 
of points Pi  = (Xi, Yi) in the plane, and 

cij = (푋푖 − 푋푗) + (푌푖 − 푌푗)                    (1) 

is the Euclidean distance. The triangular inequality is also satisfied if cij  is the length of shortest path 
from i to j on G. The cost matrix cij  is calculated using Manhattan distance as 

    cij = |Xi − Xj | + |Yi − Yj |                           (2) 
 

The mathematical formulation of a TSP for cost is said to be 
 

ctotal = ∑ ∑ 푐 × 푏                (3) 
 
where 

 
∑ 푏 = 1 for i∈V, 푖 ≠ 푗      (4) 

 
∑ 푏 = 1 for j∈V,푗 ≠ 푖      (5) 

 
bij = 0 or 1 for (i, j)∈A         (6) 

III. RELATED WO RKS 

One of the heuristic optimization algorithms is Magnetic Optimization Algorithm (MOA) which is 
inspired by magnetic field theory. It shows that MOA is useful for solving complex optimization  
problems.the  binary version  of  MOA named BMOA is proposed in [6]. Developed two 
versions of BMOA with different topologies. To justify the performance of both versions, four 
benchmark functions employed, and its results compared with BPSO and GA. The results show 
that BMOA with fully-connected topology has advantage in binary search spaces, among heuristic 
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optimization algorithms. In [1] authors have presented the application of MOA with voting modeling 
in TSP. The objective was to find the shortest distance for the salesman to visit all the cities 
once. Result obtained from the case study of [1] shows that this approach found a better solution 
than the solution suggested by TSPLIB. 
Ant Colony optimization Algorithm which was introduced in early 1990s and is explained in [8]. Authors 
in [2] explains available ant colony optimization algorithms for the TSP. An outline of how ACO 
algorithms can be applied to that problem for the TSP. It briefly discusses local search for the TSP, ex- 
perimental results are presented with MAX MIN Ant System. The proposed system in [4] is based on basic 
ACO algorithm along with well distribution strategy and information entropy which was conducted on the 
configuration strategy, updating the heuristic parameter in ACO to improve the performance in solving 
TSP. The main contribution was the study of the avoidance of stagnation behavior and premature 
convergence by  using  distribution  strategy  of  initial  ants  and dynamic heuristic parameter 
updating based on entropy. Further a mer- gence of local search solution was provided. The 
experimental results and performance comparison showed in the proposed system of [4] reaches 
the better search performance over ACO algorithms do. In [7] explain the working of ACO 
algorithms which is easily understandable by solving TSP. Based on the experiments performed, 
it is concluded that the quality of solutions depends on the number of ants. The lower number of 
ants allows the individual to change the path much faster where as the higher number of ants in 
population causes the higher accumulation of pheromone, and thus an individual keeps the path 
with higher concentration of pheromone with a high probability. 

IV. PROCEDURE 

A. Magnetic Optimization Algorithm 
One of the fundamental forces of universe is Magnetic force. The force between electromagnetic particles 
that is inversely proportional to distance between them. Force between two par- ticle increases by decreasing 
the distance between them. The inspiration from electromagnetic force is the basic principle of Magnetic 
Optimization Algorithm. 
A collection of search agents and magnetic particles is magnetic optimization algorithm. Magnetic 
particles have magnetic fields and mass  proportional to  fitness  function. In each step, agents are 
attracted by electromagnetic forces. The forces’ intensities are proportional to the distances and 
magnetic fields of agents. 
Consider a system with N agents. All agents are positioned randomly in a search space. The 
electromagnetic force on (i, j)th  agent from (u, v)th  agent at iteration t is defined as: 

푓( , ),( , )(푡) = , ( )

, ( ), , ( )
푥 , (푡) − 푥 , (푡)                             (7) 

where at iteration t, Bu,v(t) is the magnetic field of agent u, v, 푥 ,  is the kth dimension of (i,j)th agent, 

푥 , and 푥 , are kth dimensions of (i, j)th and (u, v)th agents, and D is  
the function calculating distance between agents. 
 

The D is calculated as: 

퐷 푥 , (푡),푥 , (푡) = ∑ , ( ) , ( )
                                           (8) 

where uk and lk are the upper bound and lower bound of the kth dimension of the search space, 
respectively, and search space dimension is m. 
Magnetic field of (i, j)th agent in iteration t is calculated as: 

                    Bi,j   = Fitnessi,j (t)                    (9)  

where Fitness(t) is any fitness function to solve. 
The resultant force on (i, j)th agent is calculated as given: 

퐹 , (푡) = ∑ 푓( , ),( , ). ∈ (푡)                                                  (10) 



4 
 

 
where Nij is the neighbor set of the agent i, j. 
According to law of motion, acceleration of the agent is directly proportional to force and inversely 
proportional to its mass, so the acceleration of all agents are calculated as: 

푎 , (푡) = , ( )

, ( )                                                                                                 (11) 
 
where Mi,j (t) is at iteration t, the mass of (i, j)th agent. Calculate the masses of agents as: 
 

Mi,j (t) = α + ρ × Bi,j (t)                                                                             (12)  
where α and ρ are constant values. 
The update velocity and position of the agents as follows: 

vi,j (t + 1) = rand × vi,j (t) + ai,j (t)                                                                (13) 

xi,j (t + 1) = xi,j (t) + vi,j (t + 1)                                                                   (14) 

where rand is random number in the interval [0,1]. 
MOA consists of 3 main parts: initialization, fitness evaluation, and improvement of agents [1]. Firstly 
initialize all agents with random values. Considered each agent as a candidate solution. Continuously 
run the steps until an end criterion is met. Define magnetic fields and masses for all agents. Then agents 
total forces and accelerations are calculated. And then the velocities and positions of each agents are 
updated. 

B. Solving TSP using Magnetic Optimization Algorithm 
In this section, we show how TSP can be modeled using Magnetic Optimization Algorithm. For solving TSP 
using MOA, the algorithm is as given below: 
Algorithm 1 : Magnetic Optimization Algorithm 

1. Initialize TSP and MOA parameters, n, cij , w(no. of iterations), h(no. of agents), α = 1, ρ = 1. 
2. Find distance matrix of cities. 
3. Position the particles randomly 
4. while not termination condition 
5.   Find vote for each city by each particle randomly. 
6.   Find solution suggested by each particle. 
7.   Calculate solution for each solution. 
8.    Store the distance as magnetic field, bz. 
9.   if the particle fitness is greater than global best do 
10.    Store the solution and distance. 
11.    Normalize magnetic field, bz as 

푏 = , → ,

, → , , → ,
                 (15) 

                            where Bi,j is set of bt at tth iteration. 
12.    Evaluate particle’s mass, mz using (12). 
13.    for all particles do 
14.    Set magnetic force, fz = 0. 
15.   Find neighbors, nz. 
16.   for all neighbors do 
17.    Update magnetic force using (7). 
18.   end for 
19.   Update particle velocity, vz using (13). 
20.   Update particle position, xz using (14). 
21.   Perform correction if necessary. 
22.  end for 
23.  end while 
24.  Display global best solution. 

     25.  Compute time. 
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C. Ant Colony Optimization 
Single ant behavior is considered to solve complex problems. Instead, a colony of ants can solve complex 
problems thatcannot be handled by individuals. The ants have the ability to find shortest path from food source 
to the nest. That is, ants have ability to communicate indirectly using pheromone trails. This is the basic of ant 
colony optimization algorithm.  
Initially, the artificial ant creates solution by traveling between vertices and by using probability specified by 
the amount of pheromone in each vertex, ant decides to choose next vertex to be visited. The ant remembers 
visited vertices to avoid sub-cycles. Ant returns by deterministic way and leaves pheromone trail on traveled 
edges. The left pheromone intensity decides quality of constructed solution. As time passes, the pheromone on 
each edge evaporates.  
For solving of the problem of TSP, algorithm which used ant system (AS) which was presented in [2]. 

 Tour Construction: Initially, ants are positioned randomly on each city. During each step, ant k performs a 
probabilistic action choice rule. The probability with which ant k, at city i currently, chooses next city j to go at 
the tth iteration is given by: 

푃 , (푡) =
( )

∑ [ ( )]∈ [ ]                   (16) 

where ηij=1/dij, β and α are two parameters to determine, respectively, the heuristic information and the 
relative influence of the pheromone trail, and Nk is the neighboring cities of ant k, that is, the set of cities 
which is not yet visited by ant k. The parameters α and β has the following role. If α = 0, selecting the 
closest city. If β = 0, only pheromone amplification is at work. 
Pheromone  Update:  The  pheromone  trails  are  updated, after all ants have constructed tours. First, by a 
constant factor  pheromone strength is lowered and then allow each ant add to pheromone on the visited 
arcs. 

휏 (푡 + 1) = (1− 휌)휏 (푡) + ∑ ∆휏 (푡)          (17) 
 
where ρ is the pheromone trail evaporation that lies between 0 and 1. The parameter ρ, to avoid unlimited 
accumulation of the pheromone deposits and it enables to forget previously taken bad decisions. Pheromone 
strength decreases exponentially, if an arc is not chosen by the ants. ∆τk(t) is the amount of 
pheromone ant k puts on the visited arcs. 

∆휏 (푡) = ( )                                              (18) 
 
if arc (i, j) is used by ant k, otherwise 0, where Lk(t) is the length of the kth ant’s tour. Arcs used by many 
ants and those contained in shorter tours will receive more pheromone and therefore are more likely to 
be chosen in future iterations. Since start of the algorithm, the best tour found is denoted by Tgb (global-
best tour). There are two types of pheromone update: 
Global pheromone trail update: 
After each iteration, pheromone is allowed to add by the global best ant. Update Pheromone as: 

휏 (푡 + 1) = (1− 휌). 휏 (푡) + 휌.∆휏 (푡)               (19) 
 

where 

∆휏 (푡) =
1
퐿

 
 
The pheromone update is applied to the arcs of the global-best tour, not to all the arcs. The 
parameter ρ is for pheromone evaporation. 

 
• Local pheromone trail update: 

Additional to the global updating rule, the ants also does local update rule that is applied 
immediately after an arc is crossed during the tour construction: 

휏 = (1 − 휀). 휏 + 휀. 휏                                                (20) 
where 0 < ε < 1 and τ0 are two ACO parameters. The local updating rule has an effect to make an already 
chosen arc less desirable for a following ants. The exploration of arc not yet visited is increased. 
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Heuristic Parameter Updating (β): When algorithm  be- gins, information entropy is maximum. On 
each path as pheromone increases, entropy decreases gradually. Entropy will eventually reduce to 
0, if it is not controlled and the pheromone on only one path will be maximum which will be as 
mistaken the final solution. 
In the pheromone matrix each trail is a discrete random variable. The random variable entropy is 
defined as: 

퐸(푋) = −∑ 푃 푙표푔푃                      (21) 
where Pi is the probability of occurrence of pheromone trails in the pheromone matrix. For symmetric n 
cities TSP, r = n(n − 1)/2. The maximum entropy is as follows: 

Emax = logr       (22) 
The heuristic parameter can be updated as the rule given by 

 
 

 
    (23) 
 
 
 

퐸′ = 1−                               (24) 
 

E′ is calculated for current pheromone matrix entropy value and X, Y and Z are thresholds according 
to city size. 

D. Solving TSP using Ant Colony Optimization 
The steps taken for solving TSP using Ant Colony Optimization includes the following steps: 

 Initialize: Allocate m ants randomly on n cities. The amount of pheromone on each edge is 
initialized to a tiny quantity. 

 Pseudorandom proportional rule: Probability of an ant to move to city j from city i is based 
on priori available heuristic value and pheromone trail. 

 Local Pheromone Update: After each construction step, all the ants perform updation. 
 Computation of the optimal path  
 Global Updating of pheromone: Update only in the optimal path. 

Algorithm for solving TSP using ACO is described as follows: 
Algorithm 2 : Ant Colony Optimization 

1. Initialize parameters for TSP and ACO. 
2. Initialize pheromone trails on each edge, τij . 
3. Calculate maximum entropy, Emax  = logr where r =n(n − 1)/2 and n is number of cities. 
4. while not termination condition 
5.           Randomly position m ants on n cities. 
6.        for each particle do  
7.          Find unvisited cities. 
8.     Ant moves in different route using probabilistic decision rule using 

(15). 
9.     Ant completes one tour. 
10.     Apply local pheromone update rule. 
11.     Store the solution and distance. 
12.    end for 
13.   Apply global pheromone update rule.  
14.    Calculate entropy value of current pheromone trails, Ecurrent. 

15.    Calculate E′ using (23). 
16.    Heuristic parameter, β is updated using (22). 
17. end while 
18. Display global best solution. 
19. Compute time. 
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V. EXPERIMENTAL RESULTS 

Input dataset for case study is taken from TSPLIB. It provides a number of datasets for solving TSP.  Here,  
we have taken the sets namely, burma14, ulysses16 and bayg29.  

TABLE I. BURMA14 

Iteration Particle 
/Ant 

Distance 
(MOA) 

Distance 
(ACO) 

Computation Time 
(MOA) (s) 

Computation  
Time (ACO) (s) 

10 14 56.21 31.22 0.017318 0.088476 

10 49.42 31.22 0.013068 0.058507 

5 69.23 31.22 0.006479 0.030062 

20 14 52.30 31.22 0.023520 0.144082 

10 49.42 31.22 0.022648 0.108659 

5 62.00 31.22 0.016466 0.059520 

30 14 52.09 31.22 0.035630 0.225364 

10 49.42 31.22 0.026615 0.152643 

5 54.78 31.22 0.021157 0.084022 

TABLE II.  ULYSSES 16 

Iteration Particle 
/Ant 

Distance 
(MOA) 

Distance 
(ACO) 

Computation Time 
(MOA) (s) 

Computation Time (ACO) 
(s) 

10 16 99.18 55.61 0.01618 0.134162 

13 93.87 55.94 0.016066 0.078928 

11 89.65 55.94 0.015804 0.067428 

20 16 95.53 55.32 0.033091 0.207363 

13 92.69 55.82 0.032398 0.178799 

11 89.65 55.21 0.016466 0.13024 

30 16 85.30 55.32 0.046838 0.303615 

13 92.69 55.82 0.02627 0.239012 

11 89.65 55.21 0.044027 0.232875 

TABLE III. BAYG29 

Iteration Particle 
/Ant 

Distance 
(MOA) 

Distance 
(ACO) 

Computation Time 
(MOA) (s) 

Computation Time (ACO) 
(s) 

10 28 21416.12 10124.70 0.027322 0.467933 

27 21771.43 10332.06 0.026949 0.455241 

25 21395.15 10332.06 0.029791 0.428513 

20 28 21416.12 10124.70 0.055019 0.953592 

27 19861.69 10332.06 0.052046 0.926285 

25 21067.86 10332.06 0.047581 0.13024 
30 28 21416.12 10124.70 0.079973 1.326868 

27 19861.69 10332.06 0.071206 0.820827 
25 21067.86 10332.06 0.079659 1.275330 
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Fig 1 shows comparison of distanceand Fig 2 shows the comparison of computation time using MOA 
and ACO. Similarly Table 2 and Table 3 shows that of ulysses16 and bayg29 respectively. 
Fig 3 and Fig 4 shows comparison of distance and computation time respectively of 
ulysses16. Fig 5 and Fig 6 shows comparison of distance and computation time of bayg29 
respectively. Hardware used to run the program  has Processor  type  of Intel Core 2 Duo and speed 2000.0 
MHz with Memory size 2048MB, memory type DDR2 SDRAM and memory speed 667 MHz. Table 1 
shows the distance and computation time of burma14 using MOA and ACO. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Comparison of distance for ACO and MOA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.  Comparison of computation time for ACO and MOA 
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Fig. 3.  Comparison of distance for ACO and MOA 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Comparison of computation time for ACO and MOA 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Comparison of distance for ACO and MOA 



10 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.  Comparison of computation time for ACO and MOA 

VI.INFERENCE 

The following are the inferences obtained: 
 Traveling Salesman Problem is solved using Magnetic Optimization Algorithm and Ant Colony 

Optimization Algorithm. 
 Distance obtained for ACO is nearly optimal compared to MOA in all three cases of burma14, 

ulysses16 and bayg29. 
 Time for computing the solution is much less for MOA. 

VII.CONCLUSION 

The paper presents a comparison between ant colony opti- mization algorithm and magnetic optimization 
algorithm. ACO provides a better solution when compared to MOA. Instead, MOA obtains result in less 
computation time. For very large problems, the time for computing and obtain a near optimal result is the 
main factor. We conclude that MOA provides a near optimal solution in less computation time. 
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